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Abstract 
The paper addresses the issue of reserving resources 
at ATM switches along the path of calls requiring a 
deterministic bound on end-to-end delay. The switches 
are assumed to schedule outgoing cells using the 
Earliest- Deadline -First (EDF) scheduling discipline. 
EDF is known to be an optimal scheduling discipline 
when providing delay bounds to a number of calls 
being served by a single scheduler. We present the 
algorithm for call admission control (CAC), and 
propose a number of resource division policies used 
for mapping the end-to-end delay requirement of a 
call into local delay deadlines to be reserved at each 
scheduler. 
 
 

1. Introduction 
 
One of the main promises of ATM networks is to 

provide users with Quality-of-Service (QoS) guarantees, 
such as Cell Transfer Delay (CTD) and Cell Loss Ratio 
(CLR). Handling the variety in QoS requirements of 
different applications requires the network to use a 
mechanism for serving cells from different applications 
according to their granted QoS level. Many scheduling 
disciplines have been proposed in the literature to 
implement such mechanism (see [1], [2], and [3]). Each 
scheduling discipline requires algorithms for performing 
Call Admission Control (CAC) and resource reservation. 
The paper proposes such algorithms for the case of EDF 
service discipline and for calls requiring a hard 
(deterministic) bound on the end-to-end delay 
experienced by their cells. The paper addresses the 
problem of how to map the end-to-end delay requirement 
of a call into a local resource requirement to be reserved 
at each scheduler along the call’s path. 

The paper is based on the use of the general EDF 
schedulability condition given in [4], and the EDF 
schedulability condition for token-bucket-shaped traffic 
given in [5]. The reader is encouraged to review those 

references (all available for download from the Internet) 
in order to get in the context of the paper. 

The rest of this paper is organized as follows: Section 
2 presents a brief discussion on the EDF scheduling 
discipline. Section 3 presents the CAC algorithm for 
bounded end-to-end delay services. Section 4 proposes a 
number of resource division policies that are applicable 
when using EDF schedulers. Section 5 concludes the 
paper. 

 
2. Defining EDF operation 

 
The operation of an EDF scheduler is described as 

follows: a deadline is assigned to each newly arriving cell 
from call (f). The deadline is computed as the sum of the 
arrival time of the cell and the local delay bound reserved 
for call (f) at this scheduler. The scheduler serves cells in 
the ascending order of their deadlines.  

Maintaining the delay guarantee made to call (f) is 
equivalent to having all the cells belonging to it 
transmitted completely before their assigned deadlines. 
Consequently, all cells from call (f) do not get delayed 
beyond the delay bound reserved for call (f) at this 
scheduler. We denote the case in which a cell misses its 
deadline, i.e. not transmitted completely before its 
deadline, as a case of violation. 

The conditions under which a single EDF scheduler 
operates without violations are: 
1- The stability condition: 

This is a condition that must hold true for all work-
conserving disciplines in general. If the condition does not 
hold true, a scheduler with finite buffers will always 
overflow and drop cells. For a scheduler (k) with capacity 
Ck (which is the data rate of the link following the 
scheduler), the stability condition states: 

C� k
N

j=
j ≤∑

1
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where ρ j  is the average rate (in bits per second) of the 

traffic source of call (j) and N is the number of calls that 
are being served by scheduler (k). 
2- The schedulability condition: 

The schedulability condition guarantees that a 
scheduler will not make violations and will, therefore, 
honor the QoS commitment made during the call set-up 
phase. The form of the schedulability condition differs, in 
general, for each scheduling discipline. If the 
schedulability condition is sufficient but not necessary, 
then there is a possibility of under-utilizing the scheduler 
since a violation of the sufficient conditions does not 
necessarily mean that a given set of calls is not 
schedulable. On the other hand, a schedulability condition 
that is both necessary and sufficient guarantees that there 
is no under-utilization of the scheduler’s resources. 

 
2.1 Schedulability conditions for token-bucket 
traffic 

 
Here, we use the results presented in [5] which applies 

Theorem 1 in [4] to deduce the schedulability conditions 
for token-bucket traffic models. The analysis in [5] 
assumed the use of a preemptive EDF scheduler which is 
equivalent to the use of negligible cell transmission time 
which is typical in the case of ATM networks with small 
cell size and high speed links. For negligible cell 
transmission time, [5] defines the function F(t) as: 

F(t) = C t −−−− )d(tA j
Nj

*
j −∑

∈
 (2) 

Where C is the data rate of the link serving the EDF 
scheduler in bits per second, dj is the delay bound 
reserved for call (j) in seconds, and )(tA*

j , in bits, is the 

traffic-constraint function on the traffic arrivals from call 
(j) up to time (t). In [5], it is shown that the schedulability 
condition of an EDF scheduler is equivalent to verifying 
that: 

F(t) ≥ 0             ∀ t ≥ 0 (3) 
As in [5], we will be dealing with the case in 

which )(tA*
j  represents token-bucket traffic models 

(σ,ρ,c), and (σ,ρ). 
 

3. CAC for bounded delay service in ATM 
networks. 

 
For bounded delay service, the application of the CAC 

algorithm on a call path, which typically consists of more 
than one scheduler, requires the computation of the 
minimum delay that each scheduler along the path of the 
call can guarantee to this new call. This allows the CAC 
algorithm to determine the minimum achievable end-to-
end delay bound for this call and, thus, to determine if the 

network can guarantee the requested delay bound and to, 
consequently, decide if the call is accepted or not. 

This section starts by describing the assumed CAC 
operation when accepting a new call. We then discuss the 
computation of the minimum delay bound that an EDF 
scheduler can guarantee to calls with token-bucket traffic 
models. 

 
3.1 CAC operation 

 
The CAC operation proposed in [5] assumes that the 

call is established using a setup protocol such as ATM 
signaling. The operation of this protocol proceeds as 
follows: the calling party wishing to establish a call (f), 
sends a SETUP message to the called party, including 
information such as the flow’s traffic characteristics (Peak 
Cell Rate (PCR), Sustained (average) Cell Rate (SCR), 
Maximum Burst Size (MBS)), and the required end-to-
end delay bound (Df). This message travels over K 
schedulers belonging to the call path P selected by the 
routing algorithm in use. At each scheduler i on P, the 
minimum delay that a scheduler i can guarantee to call 

f, di
f
* , is computed and added to d f

* , which is the 

cumulative delay sum included in the setup message. If at 
some scheduler, the cumulative delay exceeds the 
required delay bound, then the call cannot be accepted 
and a RELEASE message is returned to the calling party. 
Otherwise, the setup message reaches the last scheduler 

which checks if Df ≥ D f
* , where ∑

K

i
ff diD

1=

*=*  is the 

minimum achievable end-to-end delay for call f.  If the 
condition is true, the call is accepted, and a CONNECT 
message is then returned on the same path to the calling 

party, reserving a delay bound d k
f ≥ d k

f
*  to call f at each 

scheduler (k) such that Dd f
Pk

k
f ≤∑

∈
. The values of dk

f  

are chosen according to some delay division policy. The 
type of the division policy in use is the main subject of 
this paper. 

We assume that only the final scheduler checks the 

validity of condition (Df ≥ D*
f ) and makes the irreversible 

decision of accepting or rejecting the call. However, some 
resource division policies exhibit the problem of having 
one or more resource-limited schedulers. We define a 
scheduler to be resource-limited for a call (f) if the 

resource division policy in use results in di
f < di*

f . We 

present algorithms for handling the case of having 
resource-limited schedulers in Section 4. 

 
 



3.2 Minimum delay bound of a new call 
 
The CAC algorithm depends on computing the 

minimum delay bound that can be guaranteed by an EDF 
scheduler to a new call given its traffic characteristics, 
delay requirement and the current state of the scheduler. 
The computation of this value allows a scheduler to 
determine if it has enough capacity to serve the incoming 
call. As described in Section 3-1, this value is essential to 
the CAC operation for a call spanning multiple schedulers 
along its path. This value will also be used when applying 
the proposed resource division policies as an indicator of 
the loading state of a scheduler. The solution of this 
problem for the (σ,ρ,c), and (σ,ρ) traffic models is given 
in [5]. 

 
4. Resource division policies 

 
In this section, we propose policies for dividing the 

end-to-end delay requirement among the schedulers along 
the call path. It is impossible to devise a single division 
policy that maximizes the acceptable number of calls for 
the general case in which a network consists of multiple 
paths and with calls having different traffic characteristics 
and delay requirements. Therefore, we will derive 
resource division policies for a single path, initially 
unloaded network with all calls having the same traffic 
characteristics and delay requirement. The derived 
policies can then be applied to more general scenarios and 
their relative performance can be evaluated using 
simulation. 

We start by broadly categorizing resource division 
policies into the following categories: 

i- Static policies: These are policies in which the 
delay requirement assigned to a scheduler is 
independent of the loading state of this scheduler or 
other schedulers on the call path. 

ii- Dynamic policies: These are state-dependent 
policies in which the delay requirement assigned to a 
scheduler depends, in general, on its state and the state 
of other schedulers on the call path. 
We will study each category in a separate section and 

present the results for both (σ,ρ,c) and (σ,ρ) models. We 
will denote the number of schedulers along the single path 
network by K and we assume that all calls have an end-to-
end delay requirement of Df. The formulas used for 
implementing the following policies depend on the 
assumption of having a rate-controller before each 
scheduler. The delay contribution of a scheduler to the 

end-to-end delay is, therefore, independent of other 
schedulers’ contribution, and we have:  

∑
K

i

i
ff dD

1=
=  (4) 

 
4.1 Static division policies 

 
In static division policies, the delay bound assigned to 

a scheduler is independent of its loading state. Therefore, 
the same delay will be assigned to a given scheduler for 
all calls of the same traffic characteristics and delay 
requirements offered to a single path network. Let us 
denote the maximum number of acceptable calls by a 
scheduler (i) as Ni. Hence the maximum number of 
acceptable calls (Nmax) on the path is given by: 

NN i
Ki≤≤1

min=�����  (5) 

 
4.1.1 Optimal static policy. An optimal policy is one 

that maximizes the number of calls acceptable on the 
call path. 
Lemma: The optimal policy is the one which satisfies 
the condition that a scheduler (i) assigns a delay d i

f to 

call (f) such that: 
KiNN i ≤≤∀= 1          const= max  (6) 

The proof is of the above lemma is as follows: assume 
that another policy can accept a larger number of calls 
than Nmax. This means that some scheduler (k) can accept 
a number of calls Nk ≥ Nmax and has a delay 

)( maxNdd k
f

k
f > . Since the end-to-end delay is fixed, 

another scheduler (l) must have delay )( maxNdd l
f

l
f < . 

Consequently, Nl≤ Nmax. From (5), the number of 
acceptable calls would then be N ≤ min (Nk, Nl) ≤ Nmax 
Therefore, no policy can accept more calls than Nmax 
which is given by the policy satisfying (6). 

In the following, we derive the formulas for the 
optimal static policy satisfying (6): 

i- (σ,ρ, c) model: We start by deriving the formula 
for Ni. Since all calls will be assigned the same delay 
bound at a given scheduler, applying the schedulability 
condition in (3), we have: 

)d(tAntC i
f

*
f

ii −≥        ∀ t ≥ 0 (7) 

We solve (6) for )n(=N ii max by considering Figure 
1, which shows the two sides of (7) for (σ,ρ, c) traffic 
model. 



Figure 1: Deriving the value of Ni for a scheduler i 
along the path from source to destination 
 
From graph, we find that: 
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N
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To satisfy (6), we must have: 
Ki,j )     d+a(C)=d+a(C j

ff
ji

ff
i ≤≤∀ 1  (9) 

The solution of (9) under the condition in (4) is as 
follows: from (9), we have: 
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Substituting in (8), we get 

∑
K

i= iff

ff

C
ac

a+KD
=N

1

max 1
 (14) 

ii- (σ,ρ) model: We note that the (σ,ρ) model is a 
(σ,ρ,c) model with c→∞. Using cf→∞ in (13), and (14) 
(note that as c→∞, a should tend to 0 so that  ac→ 
finite value = σ ), we get: 

Kj            D

C

C=d fK

i= i

j
j
f ≤≤∀

∑
1

1

1

1

 (15) 

∑
K

i= if

f

C
�

D
=N

1

max 1
 (16) 

Note that (15) depicts an inverse capacity proportional 
policy, as the delay bound assigned to a scheduler is 
inversely proportional with its capacity, and thus a 
scheduler with smaller capacity is required to reserve 
larger delay bound (i.e. less resource load). 

 
4.1.2 Handling resource-limited schedulers. There is a 

possibility of having resource-limited schedulers when 
applying static policies. A resource limited scheduler 
(i) is one for which the assigned delay bound value 

d i
f as computed from (13) (or (15)) is less than the 

minimum delay bound d i*
f achievable by the scheduler 

given its loading state. 
There are two approaches for handling this case: one 

approach is to reject the call; the other approach is to 
accept it and redistribute the remaining of the local delay 
bound on other schedulers. Note that assigning the 
minimum delay bound d i*

f  to some call (f) does not 

necessarily imply that scheduler (i) cannot accept any 
more calls as it can still accept other calls with less 
intense traffic characteristics or more relaxed delay 
requirement. In the following, we give the algorithms for 
re-distributing the delay among other schedulers when 
there exists one or more resource-limited schedulers. 

i. (σ,ρ,c) model: Rewriting equation (13), we have: 

Kj

C

KaD
adC K

i i

ff
f

j
f

j ≤≤∀
∑

1          
1

+
=)+(

1=

 (17) 

We use this equation to reduce the execution time of 
the algorithm by keeping a sorted list of the quantity 

)a+d(C f
j*
f

j  and comparing it with the quantity 

∑
K

i= i

ff

C

Ka+D

1

1
 to identify resource-limited schedulers. The 

algorithm is given in the following steps. 
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- Initialize S={i: 1≤ i ≤ K}  
- Sort S in ascending order of 

)+( * adC f
j
f

j  
 

- Set B=φ  
- Set 
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∀ i∈S 

//Initial assignment 
of local delay 
bounds 

- Find the least index (l) for which 

∑
K

i= i

ll
l

j*
l

j

C

Ka+D)<a+d(C

1

1
 

// Identify 
resource-limited 
schedulers 

- B=B ∪ { i : i∈S, i ≥ l} // Add resource-
limited schedulers 
to B 

- If B=φ then terminate // No resource-
limited 
schedulers⇒ 
terminate 

- Set dd i
f

i
f

*=  ∀ i∈B // Reserve the 
remaining delay at 
resource-limited 
schedulers 

- S=S-B // Update S to 
remove resource-
limited schedulers 

- ∑−
∈Bi

i*
fff dD=D  // Update the delay 

requirement 

- Return to 3 // Loop until no 
resource-limited 
schedulers 

 
ii. (σ,ρ) model: Rewriting equation (15), we have: 

∑
K

i=

i

fj
f

j

C

D
=dC
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We use this equation to reduce the execution time of 
the algorithm by keeping a sorted list of the quantity 

dC j*
f

j  and comparing it with the quantity 
∑
K

i=

i

f

C

D

1
1

 to 

identify resource-limited schedulers. The algorithm is 
shown in the following steps. 

 
- Initialize S={ i : 1≤ i ≤ K}  
- Sort S in ascending order 
of dC j

f
j *  

 

- Set B=φ  

- Set D

C

C=d fK

i= j

i
i
f

∑
1

1

1

∀ i∈S // Initial assignment of 
local delay bounds 

- Find the least index (l) 

for which 
∑
K

i= i

fl*
f

l

C

D
>dC

1

1
 

// Identify resource-
limited schedulers 

- B=B ∪ { i : i∈S, i ≥ l} // Add resource-limited 
schedulers to B 

- If B=φ then terminate // No resource-limited 
schedulers⇒ terminate 

- Set d=d i*
f

i
f  ∀ i∈B // Reserve the remaining 

delay at resource-limited 
schedulers 

- S=S-B // Update S to remove 
resource-limited 
schedulers 

- ∑−
∈Bi

i*
fff dD=D  // Update the delay 

requirement 

- Return to 3 // Loop until no resource-
limited schedulers 

 
4.1.3 Even policy (EVEN). We use the even policy as a 

reference policy against which other policies may be 
compared. In EVEN policy, all schedulers are required 
to reserve the same amount of delay, hence: 

K
D

=d
fi

f  (19) 

From (8), we have for (σ,ρ,c) model: 

ac

))KD+(a(C
=N

ff

ff
i

i  (20) 

and using (5), 

ac

))KD+(a(C
=N

ff

ff
EVEN

min
 (21) 

Comparing with the expression of Nmax in (14), we get 
the relative gain value of the optimal static policy with 
respect to even policy: 

∑
=

K

i i
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C
C

K
=

N
N

1

min
max  (22) 

From (8), by taking c→∞, we have for (σ,ρ) model: 

�K
DC

=N
f

f
i

i  (23) 

and using (5), (23) 

�K
DC

=N
f

f
EVEN
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As in (22), from (16), the gain is: 



∑
=

K

i i
EVEN

C
C

K
=

N
N

1

min
max  (25) 

Handling resource-limited schedulers, if the admission 
policy allows their acceptance, can be done using similar 
algorithms to those used for the case of the optimal static 
policy. 

 
4.2 Dynamic division policies 

 
In dynamic division policies, the delay bound assigned 

to a scheduler depends, in general, on its loading state as 
well as the loading states of other schedulers on the call 
path. This complicates the analysis of such policies 
because even when all calls have the same traffic 
characteristics and delay requirement, the assigned delay 
bound at a scheduler for a certain call is not, in general, 
equal to the one for previous or subsequent calls. 
Therefore, one cannot compute values such as Nmax as for 
static policies and, hence, it’s not possible to devise an 
optimum dynamic division policy. Instead, we propose 
three adhoc policies. The proposed policies are extensions 
of a policy suggested in [1] for dividing the end-to-end 
delay bound. This policy is based on the assumption that 
each scheduler initially reserves the tightest possible delay 
value for the incoming call. It then suggests subsequent 
relaxation of this reservation by equally redistributing the 
excess end-to-end delay on the schedulers. The excess 
end-to-end delay is defined as: 

DDD *
fff −=  (26) 

 
4.2.1 Even distribution of excess delay. This policy is 

the one suggested in [1]. The delay bound formula is 
given by: 

Kj             
K

D
+d=d

fj*
f

j
f ≤≤∀ 1  (27) 

 
4.2.2 Capacity proportional distribution of excess 

delay. In this policy, the excess delay is distributed in 
inverse proportion to the scheduler capacity. The delay 
bound formula is given by: 

Kj           

C
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D

+d=d K

i=
i

j
f

j*
f

j
f ≤≤∀

∑
1

1
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 (28) 

 
4.2.3 Remaining-delay proportional distribution of 

excess delay. In this policy, the excess delay is 
proportional to the minimum delay bound that the 
scheduler can guarantee to the incoming call. The 
delay bound formula is given by: 

Kj          d
D

D
+d=d j*

f*
f

fj*
f

j
f ≤≤∀ 1  (29) 

⇒ Kj             
D

D
d=d *

f

fj*
f

j
f ≤≤∀ 1  (30) 

 
5. Conclusion 

 
This paper discussed the use of non-even resource 

division policies when performing resource reservation in 
order to provide bounded delay service in an ATM WAN. 
We have derived the required local delay allocations to 
obtain an optimal static policy for a single path network. 

The use of non-even resource division policies when 
performing resource reservation has the potential of 
obtaining more efficient utilization of network resources. 
We have derived an expression for the gain in the number 
of accepted calls along a single path of schedulers, due to 
the use of non-even static resource division policies. This 
gain value increases with the number of schedulers on the 
call path and with the imbalance in their link capacities. 

The use of dynamic policies can provide even higher 
gain in situations where the call path is initially loaded, 
which is common in a network with many intersecting 
call paths. 

Current research activity is focusing on evaluating the 
performance of the proposed policies for networks with 
general topologies, using simulation. Initial results have 
shown considerable gain improvement using such 
policies. 
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