
Resource Division Policies for EDF Scheduling in ATM Networks

Amr S. Ayad
asaad@ie-eg.com

Mahmoud T. El-Hadidi
hadidi@frcu.eun.eg

Khaled M. Fouad Elsayed
khaled@ieee.org

Department of Electronics and Communications Engineering
Faculty of Engineering, Cairo University

Giza, Egypt 12613

Abstract
The paper addresses the issue of reserving resources
at ATM switches along the path of calls requiring a
deterministic bound on end-to-end delay. The switches
are assumed to schedule outgoing cells using the
Earliest- Deadline -First (EDF) scheduling discipline.
EDF is known to be an optimal scheduling discipline
when providing delay bounds to a number of calls
being served by a single scheduler. We present the
algorithm for call admission control (CAC), and
propose a number of resource division policies used
for mapping the end-to-end delay requirement of a
call into local delay deadlines to be reserved at each
scheduler.

1. Introduction

One of the main promises of ATM networks is to

provide users with Quality-of-Service (QoS) guarantees,
such as Cell Transfer Delay (CTD) and Cell Loss Ratio
(CLR). Handling the variety in QoS requirements of
different applications requires the network to use a
mechanism for serving cells from different applications
according to their granted QoS level. Many scheduling
disciplines have been proposed in the literature to
implement such mechanism (see [1], [2], and [3]). Each
scheduling discipline requires algorithms for performing
Call Admission Control (CAC) and resource reservation.
The paper proposes such algorithms for the case of EDF
service discipline and for calls requiring a hard
(deterministic) bound on the end-to-end delay
experienced by their cells. The paper addresses the
problem of how to map the end-to-end delay requirement
of a call into a local resource requirement to be reserved
at each scheduler along the call’s path.

The paper is based on the use of the general EDF
schedulability condition given in [4], and the EDF
schedulability condition for token-bucket-shaped traffic
given in [5]. The reader is encouraged to review those

references (all available for download from the Internet)
in order to get in the context of the paper.

The rest of this paper is organized as follows: Section
2 presents a brief discussion on the EDF scheduling
discipline. Section 3 presents the CAC algorithm for
bounded end-to-end delay services. Section 4 proposes a
number of resource division policies that are applicable
when using EDF schedulers. Section 5 concludes the
paper.

2. Defining EDF operation

The operation of an EDF scheduler is described as

follows: a deadline is assigned to each newly arriving cell
from call (f). The deadline is computed as the sum of the
arrival time of the cell and the local delay bound reserved
for call (f) at this scheduler. The scheduler serves cells in
the ascending order of their deadlines.

Maintaining the delay guarantee made to call (f) is
equivalent to having all the cells belonging to it
transmitted completely before their assigned deadlines.
Consequently, all cells from call (f) do not get delayed
beyond the delay bound reserved for call (f) at this
scheduler. We denote the case in which a cell misses its
deadline, i.e. not transmitted completely before its
deadline, as a case of violation.

The conditions under which a single EDF scheduler
operates without violations are:
1- The stability condition:

This is a condition that must hold true for all work-
conserving disciplines in general. If the condition does not
hold true, a scheduler with finite buffers will always
overflow and drop cells. For a scheduler (k) with capacity
Ck (which is the data rate of the link following the
scheduler), the stability condition states:

C� k
N

j=
j ≤∑

1
 (1)

where ρ j is the average rate (in bits per second) of the

traffic source of call (j) and N is the number of calls that
are being served by scheduler (k).
2- The schedulability condition:

The schedulability condition guarantees that a
scheduler will not make violations and will, therefore,
honor the QoS commitment made during the call set-up
phase. The form of the schedulability condition differs, in
general, for each scheduling discipline. If the
schedulability condition is sufficient but not necessary,
then there is a possibility of under-utilizing the scheduler
since a violation of the sufficient conditions does not
necessarily mean that a given set of calls is not
schedulable. On the other hand, a schedulability condition
that is both necessary and sufficient guarantees that there
is no under-utilization of the scheduler’s resources.

2.1 Schedulability conditions for token-bucket
traffic

Here, we use the results presented in [5] which applies

Theorem 1 in [4] to deduce the schedulability conditions
for token-bucket traffic models. The analysis in [5]
assumed the use of a preemptive EDF scheduler which is
equivalent to the use of negligible cell transmission time
which is typical in the case of ATM networks with small
cell size and high speed links. For negligible cell
transmission time, [5] defines the function F(t) as:

F(t) = C t −−−−)d(tA j
Nj

*
j −∑

∈
 (2)

Where C is the data rate of the link serving the EDF
scheduler in bits per second, dj is the delay bound
reserved for call (j) in seconds, and)(tA*

j , in bits, is the

traffic-constraint function on the traffic arrivals from call
(j) up to time (t). In [5], it is shown that the schedulability
condition of an EDF scheduler is equivalent to verifying
that:

F(t) ≥ 0 ∀ t ≥ 0 (3)
As in [5], we will be dealing with the case in

which)(tA*
j represents token-bucket traffic models

(σ,ρ,c), and (σ,ρ).

3. CAC for bounded delay service in ATM
networks.

For bounded delay service, the application of the CAC

algorithm on a call path, which typically consists of more
than one scheduler, requires the computation of the
minimum delay that each scheduler along the path of the
call can guarantee to this new call. This allows the CAC
algorithm to determine the minimum achievable end-to-
end delay bound for this call and, thus, to determine if the

network can guarantee the requested delay bound and to,
consequently, decide if the call is accepted or not.

This section starts by describing the assumed CAC
operation when accepting a new call. We then discuss the
computation of the minimum delay bound that an EDF
scheduler can guarantee to calls with token-bucket traffic
models.

3.1 CAC operation

The CAC operation proposed in [5] assumes that the

call is established using a setup protocol such as ATM
signaling. The operation of this protocol proceeds as
follows: the calling party wishing to establish a call (f),
sends a SETUP message to the called party, including
information such as the flow’s traffic characteristics (Peak
Cell Rate (PCR), Sustained (average) Cell Rate (SCR),
Maximum Burst Size (MBS)), and the required end-to-
end delay bound (Df). This message travels over K
schedulers belonging to the call path P selected by the
routing algorithm in use. At each scheduler i on P, the
minimum delay that a scheduler i can guarantee to call

f, di
f
* , is computed and added to d f

* , which is the

cumulative delay sum included in the setup message. If at
some scheduler, the cumulative delay exceeds the
required delay bound, then the call cannot be accepted
and a RELEASE message is returned to the calling party.
Otherwise, the setup message reaches the last scheduler

which checks if Df ≥ D f
* , where ∑

K

i
ff diD

1=

= is the

minimum achievable end-to-end delay for call f. If the
condition is true, the call is accepted, and a CONNECT
message is then returned on the same path to the calling

party, reserving a delay bound d k
f ≥ d k

f
* to call f at each

scheduler (k) such that Dd f
Pk

k
f ≤∑

∈
. The values of dk

f

are chosen according to some delay division policy. The
type of the division policy in use is the main subject of
this paper.

We assume that only the final scheduler checks the

validity of condition (Df ≥ D*
f) and makes the irreversible

decision of accepting or rejecting the call. However, some
resource division policies exhibit the problem of having
one or more resource-limited schedulers. We define a
scheduler to be resource-limited for a call (f) if the

resource division policy in use results in di
f < di*

f . We

present algorithms for handling the case of having
resource-limited schedulers in Section 4.

3.2 Minimum delay bound of a new call

The CAC algorithm depends on computing the

minimum delay bound that can be guaranteed by an EDF
scheduler to a new call given its traffic characteristics,
delay requirement and the current state of the scheduler.
The computation of this value allows a scheduler to
determine if it has enough capacity to serve the incoming
call. As described in Section 3-1, this value is essential to
the CAC operation for a call spanning multiple schedulers
along its path. This value will also be used when applying
the proposed resource division policies as an indicator of
the loading state of a scheduler. The solution of this
problem for the (σ,ρ,c), and (σ,ρ) traffic models is given
in [5].

4. Resource division policies

In this section, we propose policies for dividing the

end-to-end delay requirement among the schedulers along
the call path. It is impossible to devise a single division
policy that maximizes the acceptable number of calls for
the general case in which a network consists of multiple
paths and with calls having different traffic characteristics
and delay requirements. Therefore, we will derive
resource division policies for a single path, initially
unloaded network with all calls having the same traffic
characteristics and delay requirement. The derived
policies can then be applied to more general scenarios and
their relative performance can be evaluated using
simulation.

We start by broadly categorizing resource division
policies into the following categories:

i- Static policies: These are policies in which the
delay requirement assigned to a scheduler is
independent of the loading state of this scheduler or
other schedulers on the call path.

ii- Dynamic policies: These are state-dependent
policies in which the delay requirement assigned to a
scheduler depends, in general, on its state and the state
of other schedulers on the call path.
We will study each category in a separate section and

present the results for both (σ,ρ,c) and (σ,ρ) models. We
will denote the number of schedulers along the single path
network by K and we assume that all calls have an end-to-
end delay requirement of Df. The formulas used for
implementing the following policies depend on the
assumption of having a rate-controller before each
scheduler. The delay contribution of a scheduler to the

end-to-end delay is, therefore, independent of other
schedulers’ contribution, and we have:

∑
K

i

i
ff dD

1=
= (4)

4.1 Static division policies

In static division policies, the delay bound assigned to

a scheduler is independent of its loading state. Therefore,
the same delay will be assigned to a given scheduler for
all calls of the same traffic characteristics and delay
requirements offered to a single path network. Let us
denote the maximum number of acceptable calls by a
scheduler (i) as Ni. Hence the maximum number of
acceptable calls (Nmax) on the path is given by:

NN i
Ki≤≤1

min=����� (5)

4.1.1 Optimal static policy. An optimal policy is one

that maximizes the number of calls acceptable on the
call path.
Lemma: The optimal policy is the one which satisfies
the condition that a scheduler (i) assigns a delay d i

f to

call (f) such that:
KiNN i ≤≤∀= 1 const= max (6)

The proof is of the above lemma is as follows: assume
that another policy can accept a larger number of calls
than Nmax. This means that some scheduler (k) can accept
a number of calls Nk ≥ Nmax and has a delay

)(maxNdd k
f

k
f > . Since the end-to-end delay is fixed,

another scheduler (l) must have delay)(maxNdd l
f

l
f < .

Consequently, Nl≤ Nmax. From (5), the number of
acceptable calls would then be N ≤ min (Nk, Nl) ≤ Nmax
Therefore, no policy can accept more calls than Nmax
which is given by the policy satisfying (6).

In the following, we derive the formulas for the
optimal static policy satisfying (6):

i- (σ,ρ, c) model: We start by deriving the formula
for Ni. Since all calls will be assigned the same delay
bound at a given scheduler, applying the schedulability
condition in (3), we have:

)d(tAntC i
f

*
f

ii −≥ ∀ t ≥ 0 (7)

We solve (6) for)n(=N ii max by considering Figure
1, which shows the two sides of (7) for (σ,ρ, c) traffic
model.

Figure 1: Deriving the value of Ni for a scheduler i
along the path from source to destination

From graph, we find that:

ac

daC
N

ff

i
ff

i
i

)+(
= (8)

To satisfy (6), we must have:
Ki,j) d+a(C)=d+a(C j

ff
ji

ff
i ≤≤∀ 1 (9)

The solution of (9) under the condition in (4) is as
follows: from (9), we have:

a
C

)d+a(C
=d fi

j
ff

j
i
f − (10)

⇒ ∑ −∑

≠≠

K

ji
i

fi

j
ff

jK

ji
i

i
f a

C

daC
d

1=1=
)

)+(
(= (11)

⇒ ∑ −−∑−

≠≠

K

ji
i=

fi
j

f
K

ji
i= i

j
f

jj
ff)(Ka

C
Ca+

C
dC=dD

11
1

11
 (12)

⇒ Kj)
CC

K
(a+

C

D

C

=d
K

i= ijfj
f

K

i= i

j
f ≤≤∀

∑−

∑
1

1
1

1

1

1

 (13)

Substituting in (8), we get

∑
K

i= iff

ff

C
ac

a+KD
=N

1

max 1
 (14)

ii- (σ,ρ) model: We note that the (σ,ρ) model is a
(σ,ρ,c) model with c→∞. Using cf→∞ in (13), and (14)
(note that as c→∞, a should tend to 0 so that ac→
finite value = σ), we get:

Kj D

C

C=d fK

i= i

j
j
f ≤≤∀

∑
1

1

1

1

 (15)

∑
K

i= if

f

C
�

D
=N

1

max 1
 (16)

Note that (15) depicts an inverse capacity proportional
policy, as the delay bound assigned to a scheduler is
inversely proportional with its capacity, and thus a
scheduler with smaller capacity is required to reserve
larger delay bound (i.e. less resource load).

4.1.2 Handling resource-limited schedulers. There is a

possibility of having resource-limited schedulers when
applying static policies. A resource limited scheduler
(i) is one for which the assigned delay bound value

d i
f as computed from (13) (or (15)) is less than the

minimum delay bound d i*
f achievable by the scheduler

given its loading state.
There are two approaches for handling this case: one

approach is to reject the call; the other approach is to
accept it and redistribute the remaining of the local delay
bound on other schedulers. Note that assigning the
minimum delay bound d i*

f to some call (f) does not

necessarily imply that scheduler (i) cannot accept any
more calls as it can still accept other calls with less
intense traffic characteristics or more relaxed delay
requirement. In the following, we give the algorithms for
re-distributing the delay among other schedulers when
there exists one or more resource-limited schedulers.

i. (σ,ρ,c) model: Rewriting equation (13), we have:

Kj

C

KaD
adC K

i i

ff
f

j
f

j ≤≤∀
∑

1
1

+
=)+(

1=

 (17)

We use this equation to reduce the execution time of
the algorithm by keeping a sorted list of the quantity

)a+d(C f
j*
f

j and comparing it with the quantity

∑
K

i= i

ff

C

Ka+D

1

1
 to identify resource-limited schedulers. The

algorithm is given in the following steps.

Ci F(t)

af+df
i t

nicf af

Nicf af

more calls

df
i

- Initialize S={i: 1≤ i ≤ K}
- Sort S in ascending order of

)+(* adC f
j
f

j

- Set B=φ
- Set

∑−

∑
)

CC

K
(a+

C

D

C

=d
K

j= jifi
f

K

j= j

i
f

1

1

1
1

1

∀ i∈S

//Initial assignment
of local delay
bounds

- Find the least index (l) for which

∑
K

i= i

ll
l

j*
l

j

C

Ka+D)<a+d(C

1

1

// Identify
resource-limited
schedulers

- B=B ∪ { i : i∈S, i ≥ l} // Add resource-
limited schedulers
to B

- If B=φ then terminate // No resource-
limited
schedulers⇒
terminate

- Set dd i
f

i
f

*= ∀ i∈B // Reserve the
remaining delay at
resource-limited
schedulers

- S=S-B // Update S to
remove resource-
limited schedulers

- ∑−
∈Bi

i*
fff dD=D // Update the delay

requirement

- Return to 3 // Loop until no
resource-limited
schedulers

ii. (σ,ρ) model: Rewriting equation (15), we have:

∑
K

i=

i

fj
f

j

C

D
=dC

1
1

 (18)

We use this equation to reduce the execution time of
the algorithm by keeping a sorted list of the quantity

dC j*
f

j and comparing it with the quantity
∑
K

i=

i

f

C

D

1
1

 to

identify resource-limited schedulers. The algorithm is
shown in the following steps.

- Initialize S={ i : 1≤ i ≤ K}
- Sort S in ascending order
of dC j

f
j *

- Set B=φ

- Set D

C

C=d fK

i= j

i
i
f

∑
1

1

1

∀ i∈S // Initial assignment of
local delay bounds

- Find the least index (l)

for which
∑
K

i= i

fl*
f

l

C

D
>dC

1

1

// Identify resource-
limited schedulers

- B=B ∪ { i : i∈S, i ≥ l} // Add resource-limited
schedulers to B

- If B=φ then terminate // No resource-limited
schedulers⇒ terminate

- Set d=d i*
f

i
f ∀ i∈B // Reserve the remaining

delay at resource-limited
schedulers

- S=S-B // Update S to remove
resource-limited
schedulers

- ∑−
∈Bi

i*
fff dD=D // Update the delay

requirement

- Return to 3 // Loop until no resource-
limited schedulers

4.1.3 Even policy (EVEN). We use the even policy as a

reference policy against which other policies may be
compared. In EVEN policy, all schedulers are required
to reserve the same amount of delay, hence:

K
D

=d
fi

f (19)

From (8), we have for (σ,ρ,c) model:

ac

))KD+(a(C
=N

ff

ff
i

i (20)

and using (5),

ac

))KD+(a(C
=N

ff

ff
EVEN

min
 (21)

Comparing with the expression of Nmax in (14), we get
the relative gain value of the optimal static policy with
respect to even policy:

∑
=

K

i i
EVEN

C
C

K
=

N
N

1

min
max (22)

From (8), by taking c→∞, we have for (σ,ρ) model:

�K
DC

=N
f

f
i

i (23)

and using (5), (23)

�K
DC

=N
f

f
EVEN

min

 (24)

As in (22), from (16), the gain is:

∑
=

K

i i
EVEN

C
C

K
=

N
N

1

min
max (25)

Handling resource-limited schedulers, if the admission
policy allows their acceptance, can be done using similar
algorithms to those used for the case of the optimal static
policy.

4.2 Dynamic division policies

In dynamic division policies, the delay bound assigned

to a scheduler depends, in general, on its loading state as
well as the loading states of other schedulers on the call
path. This complicates the analysis of such policies
because even when all calls have the same traffic
characteristics and delay requirement, the assigned delay
bound at a scheduler for a certain call is not, in general,
equal to the one for previous or subsequent calls.
Therefore, one cannot compute values such as Nmax as for
static policies and, hence, it’s not possible to devise an
optimum dynamic division policy. Instead, we propose
three adhoc policies. The proposed policies are extensions
of a policy suggested in [1] for dividing the end-to-end
delay bound. This policy is based on the assumption that
each scheduler initially reserves the tightest possible delay
value for the incoming call. It then suggests subsequent
relaxation of this reservation by equally redistributing the
excess end-to-end delay on the schedulers. The excess
end-to-end delay is defined as:

DDD *
fff −= (26)

4.2.1 Even distribution of excess delay. This policy is

the one suggested in [1]. The delay bound formula is
given by:

Kj
K

D
+d=d

fj*
f

j
f ≤≤∀ 1 (27)

4.2.2 Capacity proportional distribution of excess

delay. In this policy, the excess delay is distributed in
inverse proportion to the scheduler capacity. The delay
bound formula is given by:

Kj

C

C

D

+d=d K

i=
i

j
f

j*
f

j
f ≤≤∀

∑
1

1
1

 (28)

4.2.3 Remaining-delay proportional distribution of

excess delay. In this policy, the excess delay is
proportional to the minimum delay bound that the
scheduler can guarantee to the incoming call. The
delay bound formula is given by:

Kj d
D

D
+d=d j*

f*
f

fj*
f

j
f ≤≤∀ 1 (29)

⇒ Kj
D

D
d=d *

f

fj*
f

j
f ≤≤∀ 1 (30)

5. Conclusion

This paper discussed the use of non-even resource

division policies when performing resource reservation in
order to provide bounded delay service in an ATM WAN.
We have derived the required local delay allocations to
obtain an optimal static policy for a single path network.

The use of non-even resource division policies when
performing resource reservation has the potential of
obtaining more efficient utilization of network resources.
We have derived an expression for the gain in the number
of accepted calls along a single path of schedulers, due to
the use of non-even static resource division policies. This
gain value increases with the number of schedulers on the
call path and with the imbalance in their link capacities.

The use of dynamic policies can provide even higher
gain in situations where the call path is initially loaded,
which is common in a network with many intersecting
call paths.

Current research activity is focusing on evaluating the
performance of the proposed policies for networks with
general topologies, using simulation. Initial results have
shown considerable gain improvement using such
policies.

6. References

[1] D. Ferrari and D. C. Verma, "A Scheme for Real-Time

Channel Establishment in Wide-Area Networks”, IEEE
Journal on Selected Areas in Communications, Vol. 8,
No. 3, pp. 368-379, April 1990.

[2] A. K. Parekh, "A Generalized Processor Sharing
Approach to Flow Control in Integrated Services
Networks", Ph.D. dissertation, Dep. Elec. Eng. Comput.
Sci., M.I.T, Feb 1992.

[3] S. J. Golestani, A Framing Strategy for Congestion
Management. IEEE JSAC, vol. 9, no. 7, September
(1991)

[4] J. Liebeherr, D. E. Werge, and D. Ferrari, "Exact
Admission Control for Networks with a Bounded Delay
Service", IEEE/ACM Transactions on Networking, Vol.
4 No. 6, December 1996. Downloadable from
“ftp://ftp.cs.virginia.edu/pub/jorg/papers/ton-95-
1328.pdf”

[5] V. Firoiu, J. Kurose, and D. Towley, "Efficient
Admission Control for EDF Schedulers", Dept. of Com.
Sci., University of Massachusetts, downloadable from
“ftp://ftp.cs.umass.edu/pub/techrept/techreport/1996/UM-
CS-1996-046.ps”

